Generalized Reynolds operators on 3-Lie algebras and NS-3-Lie algebras
نویسندگان
چکیده
In this paper, first we introduce the notion of a twisted Rota-Baxter operator on 3-Lie algebra $\g$ with representation $V$. We show that induces structure $V$, which represents $\g$. By fact, define cohomology and study infinitesimal deformations using second group. Then an NS-3-Lie algebra, produces itself. naturally. Thus algebras can be viewed as underlying algebraic structures operators algebras. Finally Nijenhuis gives rise to deformed 2-cocycle. Consequently, identity map will algebra. also Reynolds serve special case
منابع مشابه
Octonions, G2 and generalized Lie 3-algebras
We construct an explicit example of a generalized Lie 3-algebra from the octonions. In combination with the result of [1], this gives rise to a three-dimensional N = 2 Chern-Simons-matter theory with exceptional gauge group G2 and with global symmetry SU(4) × U(1). This gives a possible candidate for the theory on multiple M2-branes with G2 gauge symmetry.
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملW 3 constructions on affine Lie algebras
We use an argument of Romans showing that every Virasoro construction leads to realizations of W3, to construct W3 realizations on arbitrary affine Lie algebras. Solutions are presented for generic values of the level as well as for specific values of the level but with arbitrary parameters. We give a detailed discussion of the ŝu(2)l-case. Finally, we discuss possible applications of these rea...
متن کامل2-cocycles on the Lie Algebras of Generalized Differential Operators
In a recent paper by Zhao and the author, the Lie algebras A[D] = A⊗ IF [D] of Weyl type were defined and studied, where A is a commutative associative algebra with an identity element over a field IF of any characteristic, and IF [D] is the polynomial algebra of a commutative derivation subalgebra D of A. In the present paper, the 2-cocycles of a class of the above Lie algebras A[D] (which are...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Geometric Methods in Modern Physics
سال: 2021
ISSN: ['0219-8878', '1793-6977']
DOI: https://doi.org/10.1142/s0219887821502236